Foundations of Discrete Mathematics

COT 2104

Practice 9

1) Determine which characteristics of an algorithm the following procedures have and which they lack.
a) procedure double(n: positive integer)
(1) while $\mathrm{n}>0$
(a) $n=2 n$
b) procedure sum(n: positive)
(1) sum $=0$
(2) while
(a) i <10
(b) sum $=$ sum $+i$
2) Describe and algorithm which given, upon input of n real numbers, $a_{1}, a_{2} \ldots a_{n}$ and another number, x , determines how many items in the list are equal to x .
3) Describe an algorithm which, upon input of integers a and b and a natural number n, outputs all solutions of $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{n})$ in the range $0 \leq \mathrm{x} \leq \mathrm{n}$, if there are solutions, and otherwise outputs the words "no solutions."
4) Solve the polynomial $f(x)$ and each value of x using Horner's algorithm.
a) $f(n)=-4 x^{3}+6 x^{2}+5 x-4 ; x=-1$
b) $f(n)=17 x^{5}-40 x^{3}+16 x-7 ; x=3$
5) To establish a big-Oh relationship find the witnesses c and k such that $|\mathrm{f}(\mathrm{x})| \leq$ $\mathrm{c}|\mathrm{g}(\mathrm{x})|$ when ever $\mathrm{x}>\mathrm{k}$. Determine whether each of these functions is $\mathrm{O}(\mathrm{x})$.
a) $f(x)=10$,
b) $f(x)=3 x+7, c) f(x)=\lfloor x\rfloor$
6) Determine whether each of these functions is $O\left(x^{2}\right)$.
a) $f(x)=17 x+11$
b) $f(x)=x^{2}+1000$
c) $f(x)=x \log x$.
7) Show the sequence of steps in using a binary search to find the number 7 in the list 1 , $2,3,4,5,6,7,8,9$. How many times would it be compared with an element in the list if we employed a linear search?
8) Use the definition of big-Oh given in class to show that $f=O(g)$ in each of the following cases of functions $f, g: N \rightarrow R$
a) $f(n)=8 n^{3}+4 n^{2}+5 n+1, g(n)=3 n^{4}+6 n^{2}+8 n+2$
b) $f(n)=17 n^{4}+8 n^{3}+5 n^{2}+6 n+1, g(n)=n^{4}$
